Wireless Waffle - A whole spectrum of radio related rubbish

Hop to it!signal strength
Friday 25 January, 2013, 13:45 - Radio Randomness, Spectrum Management
Posted by Administrator
Wireless Waffle received an e-mail from Des of Ireland. Des writes:
Since early May I have been noticing many many frequencies being occupied by very short bursts of digital 'noise' which are random in their frequency and time but very recognisable. So far pattern emerged is that they follow an 8 kHz spacing right across the HF bands (from 3.4 MHz to 28.5 MHz), but mainly in 6 to 9 MHz region. Even 6622kHz Shanwick being clobbered ... These noise bursts in the HF bands intrigue me, I wondered if it is a basic military comms set-up in case satellites/internet/microwave/fible-cable are clobbered.

Take a look a the picture below (click on it to open a much larger version). It is a snapshot of the radio spectrum between roughly 6550 and 6950 kHz taken using the University of Twente's on-line receiver in the Netherlands (which is a marvel in itself). The snapshot was taken at about 07:00 GMT. The horizontal axis shows the frequency, the vertical axis is time (in thie case about a minute). Straight vertical lines represent constant transmissions. Dotted ones (such as the broken line just above 6600 kHz) are morse code. Other squiggles that are roughly vertical are all manner of other signals that can be found on the HF bands.

hf frequency hopper

What is of interest here are the horizontal dashes of which there are three at the top left hand corner (just under 6550 kHz), four just below 6950 kHz and various others scattered across the chart, seemingly randomly (see around 6665 kHz and 6555 kHz for two bright ones). These are not bugs in the University's software, nor are they local interference in Twente. What they are are bursts of data from a frequency hopping transmitter. If you tune into one of the frequencies just at the time when the transmission is taking place on that frequency, you will hear a 'chuff' noise which is the quick burst of data that is being sent. If you happen across a frequency that has multiple 'hops' on it, the effect is not totally unlike there being a steam train on the frequency (listen to this actual recording).

At HF, this hopping transmission is almost certainly military in nature. Frequency hopping at HF is not at all uncommon. Even back in the 1980s, Racal's TRA 931XH would happily hop around the HF bands. In the case of the '931XH it did this by changing frequency roughly every second. Transmissions were just SSB (with an initial data burst to synchronise the receiver and transmitter - this is essential so that the two follow the same sequence of frequencies). The Wireless Waffle team had the fun of seeing a demo of the '931XH which was set to hop from frequencies between around 6950 and 7450 kHz, right across the 41m broadcast band. The effect of the hopping was to change the background noise every second or so - sometimes with a loud whistle caused by the carriers of the broadcast signals. The effect to anyone who happened to listen on a frequency that was being used would have been that they would have heard speech for a second which would then disappear.

hop to itThere's nothing unusual about the use of frequency hopping transmitters. Your bluetooth headset does this, and most GSM networks are set up to use frequency hopping too. The reason for using frequency hopping can be many and various, such as:
  • Hopping around makes the transmission much more difficult to detect. Unless you know the sequence of frequencies being used, it's almost impossible to follow the transmission from one frequency to the next.
  • Hopping can overcome some kinds of interference. If one frequency is blocked (from a broadcast transmission for example) the information sent on that frequency is lost, but if most are clear of interference, the error correction schemes can be arranged to deal with missing blocks and the overall communication is unaffected.
  • Hopping can help overcome fading and propagation problems. In a GSM network for example, Rayleigh fading will cause some channels to have deep fades and others not. Hopping around makes sure that these 'dead' channels do not cause a total lack of communication.
It's not surprising then that the military are using hopping on the HF bands (nor anywhere else for that matter). The question that remains unanswered is whether the military still need HF given all their other channels of communication. Patently they do!
1 comment ( 3118 views )   |  permalink   |   ( 2.9 / 1403 )

What is Amateur Radio Worth?signal strength
Thursday 27 September, 2012, 18:26 - Amateur Radio, Spectrum Management
Posted by Administrator
About 18 months ago, the Wireless Waffle team wrote a paper on the topic of what radio amateurs in the UK might have to pay if spectrum pricing was applied to the spectrum they use. The paper was offered to the RSGB and to Practical Wireless as material that could be used for an article in their prestigious magazines.

xe0yl sexy radio hamThe RSGB indicated that it was not the sort of article they normally published as it didn't have antennas in it or any pictures of people standing on a mountain or remote desert island. Practical Wireless never responded as they were too busy assessing the merits of the latest amateur radio gizmo to come from Latin America (see right) and the whole thing got shoved to the bottom of the 'to do' pile and forgotten about. At least I think that was what the RSGB and PW said, the old memory is a bit hazy on the subject.

Whilst the material contained in the paper is now around a year old, it still makes for interesting reading and it is almost certain that Wireless Waffle readers will find it worth the time to study. Rather than think what to do with it next, it has been uploaded to the web-site and is now available for anyone to download and read.

So, for your reading pleasure, we present 'The Duffer's Guide to Spectrum Pricing. Pour yourself a beer, turn on your VHF radio, and have a read. Then, if you are a radio ham, realise how lucky you are to be able to afford that beer you just poured yourself!
1 comment ( 1583 views )   |  permalink   |   ( 3 / 45184 )

Is 5 better than 2.4 (GHz)?signal strength
Thursday 9 August, 2012, 15:13 - Radio Randomness, Spectrum Management
Posted by Administrator
wi five logoAlthough the standard for WiFi at 5 GHz has been around for a long time, most manufacturers have focused upon producing equipment for the 2.4 GHz band. The reason for this is a simple one - it's cheaper! The higher you go in frequency, the more difficult, and therefore expensive, it becomes to transmit and receive radio signals. As a result, home routers, laptops, smart phones and other devices have almost exclusively been equipped to use the 2.4 GHz band for their WiFi connection.

Previous Wireless Waffle articles have discussed how to select the best WiFi channels in the 2.4 GHz band, and other techniques, to maximise coverage and signal quality, however we have not looked at the 5 GHz band. Recently, there seem to be a slew of articles which are claiming that using 5 GHz will produce better range and more reliable connections compared to 2.4 GHz. The logic of these articles seems to go '5 is a bigger number than 2.4 - in fact it is more than double - so it must be at least twice as good'. This, sad to say, is not the case. Here are the real facts:
  • Signals at 5 GHz only travel HALF as far as those on 2.4 GHz as higher frequencies have poorer coverage than lower ones.
  • Signals at 5 GHz will struggle almost TWICE AS HARD to get through walls than signals at 2.4 GHz due to their poorer propagation characteristics.
  • 5 GHz WiFi equipment is subject to exactly the same POWER RESTRICTIONS as that for 2.4 GHz, so there is no inherent advantage in terms of the technology itself.
  • The use of some of the 5 GHz channels is subject to the requirement to STOP TRANSMITTING if a nearby radar is detected. No such restriction applies at 2.4 GHz.
  • 5 GHz equipment will be (slightly) more POWER HUNGRY than its 2.4 GHz counterparts, increasing battery drain especially in mobile devices.
  • 5 GHz receivers are likely to be LESS SENSITIVE than 2.4 GHz receivers because of the increased difficulty of making low noise devices at higher frequencies.
  • The 5 GHz band consists of up to 25 (territory dependent) independent channels which can be used without interfering with each other meaning there is much GREATER CAPACITY for more networks, whereas the 2.4 GHz band has 13 channels of which only 3 can be used independently.
  • The 2.4 GHz band is also used for Bluetooth, microwave ovens, wireless cameras and many other applications meaning it can be subject to a lot of background interference. The 5 GHz band is MUCH CLEANER, though the band is not exclusive to WiFi systems.
  • There are still fewer 5 GHz devices around than 2.4 GHz once and hence it is likely to be LESS SUSCEPTIBLE TO SNOOPING.
As coverage is determined both by signal strength and by the amount of interference, it is therefore possible that people in particularly densely populated areas where there are lots of 2.4 GHz users around might find that the 5 GHz band provides a more reliable connection and may even provide greater coverage. In most cases, however, the 2.4 GHz band has many advantages and the claims being made that 5 GHz is somehow 'twice as good' are just plain wrong.

For a home network, in a small house or apartment, using 5 GHz may offer some advantages given the lower interference it will suffer from other devices, but in large family homes a 5 GHz WiFi router is unlikely to be able to outperform the coverage and range that a 2.4 GHz router achieves.

five is betterWhere the 5 GHz band may come into its own is when the not-quite-yet-finalised IEEE 802.11ac standard is adopted. This works in the 5 GHz bands and uses the greater capacity of the band to deliver connection speeds of up to 1 Gbps. For streaming media around, this has clear advantages. As a wireless distribution for a home internet connection, however, there is unlikely to be any improvement noticeable using 802.11ac than with the existing 802.11n standard which can already offer connections of over 100 Mbps - much faster than most home internet connections!
add comment ( 86 views )   |  permalink   |   ( 3 / 46488 )

Harmonics - Putting The Record Straightsignal strength
Monday 23 January, 2012, 04:09 - Spectrum Management
Posted by Administrator
Over the years, Wireless Waffle has tried to explain and demystify many of the more esoteric technical terms and concepts used in the wireless world such as OFDM, intermodulation and even interpreting ionograms. There is one very straightforward technical concept that is so often misused that it's time the record is set straight. That concept is harmonics.

Harmonics should be the easiest concept to understand. Passing any radio (or for that matter audio) signal through anything that is not perfectly linear (and the only things that are perfectly linear are pieces of wire) will produce differing degrees of harmonics. The non-linear device will produce other things as well (such as the aforementioned intermodulation) but harmonics are probably the number one resultant.

A harmonic is simply a copy of the original signal but with it's frequency multiplied by an integer. The second harmonic is therefore the original signal but with all it's frequencies doubled.
  • The second harmonic of 1 MHz is at 2 MHz;
  • the second harmonic of 10 MHz is at 20 MHz;
  • the second harmonic of 150 MHz is 300 MHz;
you can clearly see the pattern emerging. harmonics of deep purpleMusicians will recognise the second harmonic as being an octive. The third harmonic is simliary the original frequency, but tripled. The third harmonic of 1 MHz is 3 MHz, and so forth. The n-th harmonic is the original frequency multiplied by 'n' so the 273rd harmonic of 2 MHz is... 546 MHz. You can even play the game with light (just about) as the second harmonic of deep red (almost infra-red) is deep purple (ultra-violet) which probably explains why so many wannabe rock groups use devices such as 'harmonisers' and 'harmonic sweetners'. The only rule is that 'n' has to be an integer. There is no such thing as the 'second and a halfth' harmonic, and this seems to be where the confusion arises.

As harmonics are so common, much effort is made to ensure that transmitters are filtered to remove them. A low pass filter is one which allows lower frequencies through but attenuates higher ones and is almost universally tacked onto the output of any transmitter. You would not want a high power TV transmitter on 534 MHz (UHF channel 29 in Europe) radiating strong signals at its second harmonic frequency of 1068 MHz, in the middle of the aeronautical safety band, any more than you would want an aeronautical system at 1068 MHz radiating at 2136 MHz and causing interference to 3G base stations!

mistress harmonicSo often, you will see spurious emissions from a transmitter being called 'harmonics'. Unless those emissions are on direct multiples of the main transmitter frequency they are not harmonics, but will either be intermodulation or could be caused by the transmitter squegging. Either way, the term harmonics seems to have been awarded a new meaning to encompass all spurious emissions from a transmitter. As a Wireless Waffle reader, now that you know different, any violations of use will be punished strictly and severely.

For completeness, it is worth pointing out that there are (very rarely) such things as sub-harmonics. These occur on frequencies that are integer multiples of integer fractions of the original frequency. As an example, a problem was reported by the operator of a private mobile radio system on 72.45 MHz of breakthrough from a co-sited FM broadcast station on 96.6 MHz. 72.45 is precisely three-quarters of 96.6. This rare problem was caused by the synthesiser in the transmitter which had an oscillator on 96.6 MHz which was fed into a pre-scalar that divided the signal by 4, producing an output at 24.15 MHz. This signal was rich in harmonics and due to the shoddy design of the transmitter, the third harmonic of this signal was being fed into the transmit amplifiers and appearing at the antenna output - nasty! An additional filter on the output of the FM transmitter cured the problem. It's perhaps no surprise that the company that made the transmitter in question (who won't be identified) is no-longer manufacturing them!
add comment ( 2142 views )   |  permalink   |   ( 3 / 138043 )


<<First <Back | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | Next> Last>>