Wireless Waffle - A whole spectrum of radio related rubbish

Pennies from Heaven?signal strength
Wednesday 9 April, 2008, 15:40 - Spectrum Management
Posted by Administrator
It seems it's not just Wireless Waffle that takes an active interest in matters pertaining to spectrum management. No less than the fourth highest authority in the land (after God, the Queen and Chris Moyles), the Rt. Hon. Alastair Darling MP, chancellor of the Exchequer has obviously been taking note of what we've been saying. Section 5.16 of the his Budget 2008 entitled, innocuously enough 'Spectrum Management', says:
As broadcast media and mobile technologies continue to grow in importance and diversity, efficient use of the electromagnetic spectrum to deliver the services that society demands remains an important issue for both the public and private sectors. In line with the Government's Forward Look on public sector spectrum, the Ministry of Defence will by May 2008 publish an implementation plan setting out its plans for the release of spectrum to the market. Other departments are adopting similar processes. To ensure best use of spectrum by the private sector, Ofcom has also confirmed that in contrast to some previous spectrum releases which were available for specific uses only (notably mobile telephone services) the spectrum released by digital switchover will be available for all technologies. The Government fully supports this decision.

spectrum pricingDoes this tell us anything? Are the Government about to tax spectrum? Will spectrum be blamed for the economic downturn that we now seem to be staring into the barrels of? Will spectrum be the reason for the 2 point increase in income tax at the next budget? Or much worse, will poor spectrum management cause an extra 1 pence on the price of a pint of beer (except 'lager' which isn't really beer in the true British definition of the term)? Probably not, other than the fact that the estimated bill that Ofcom is going to charge the MoD to 'recognise its access' to the spectrum is £300 million, and that decisions on MoD ('and other departments' meaning the Civil Aviation Authority mainly) spectrum use are taken at cabinet level and so are visible on the radar.

One might go so far as to suggest that the chancellor at the time of the £22 billion 3G licence windfall, none other than the now Prime Minister, Gordon Brown, is keeping an eye on matters to make sure that the Government doesn't lose out should the MoD find a way to profit from the sudden interest in one of their previously lesser valued assets. One might do that. One might not be far wrong!
add comment ( 1228 views )   |  permalink   |   ( 3.1 / 34410 )

Farnborough Airport Frequenciessignal strength
Tuesday 11 March, 2008, 09:08 - Spectrum Management
Posted by Administrator
pilotgirlTo add to the previous list of frequencies for London Heathrow, Gatwick and City that went before, here is a set of active frequencies for Farnborough (ICAO code: EGLF) which might come in handy for the 2008 airshow. All frequencies are in MHz and use AM. Those shown in italics are unconfirmed but are listed widely enough to indicate that they are highly likely to remain current.

London Farnborough Airport
Radar 125.250
Radar Standby 130.050
Approach 134.350
Tower 122.500
Operations 130.375 (TAG Handling)
ATIS 128.400

One additional frequency of note is 444.3375 MHz (FM not AM), which is a local repeat of the tower and is interestingly in the 443.500 to 445.500 MHz Ministry of Defence (MoD) sub-band. Presumably this is assignment a hang-over from when the airport undertook more military operations than it does now.
add comment ( 1651 views )   |  permalink   |   ( 2.9 / 25639 )

Intermodulation: What's All This Thensignal strength
Friday 29 February, 2008, 08:10 - Spectrum Management
Posted by Administrator
Intermodulation (intermod for short) is a common problem besetting virtually every radio system in existence. This particular problem occurs when two (or more) signals mix together in a non-linear device creating emissions on frequencies which are directly related to the signals being mixed together. It is the same process that is used in the mixers of most superheterodyne (don't worry if this means nothing to you) receivers, where it is a wanted outcome. Intermodulation is therefore mixing which produces unwanted outcomes.

It works a bit like this: Whistle or sing two notes at the same time (OK, this bit is rather difficult, but run with it for now...) In their natural form, each note will be 'pure' or 'clean' and both notes will be distinct from each other. Now whistle or sing the same two notes through a kazoo. If you've ever heard a kazoo played, you will realise that it works by distorting the sound going through it by moving a membrane (often paper) to its extremities, in essence limiting the audio and producing a square wave output from the sine wave input. The effect of any such non-linear distortion on the two notes will be to mix them together and the resulting output will be rich in all sorts of notes and sounds that weren't there in the first place.

The same can happen with radio transmissions. Any two signals passing through a non-linear device produce outputs that were not there to begin with. Though I could run through the maths and prove that such signals actually do exist, it's a little easier just to tell you what the result is.

intermodulation diagramLet's assume that the two frequencies that we are interested in are and . The non-linearity will produce harmonics of these frequencies at 2f¹, 2f², 3f¹, 3f², 4f¹, 4f² and so on... In addition to this, it will 'mix' these harmonics together with themselves and with the original signals to produce frequencies like f¹+f², f¹-f² (these are the outputs we would want if we were using the process for mixing). Frequencies of 2f¹-f² and 2f²-f¹ are known as the 'third order intermodulation products', third because they are composed of three lots of the input signals (two of one and one of the other) and are usually the most problematic because they are closest in frequency to the original signals. Fifth order intermodulation products 3f¹-2f² and 3f²-2f¹ are the next nearest; then seventh (and every odd number thereafter). The problem gets even more complex when there are more than two signals getting mixed together. The even order intermodulation products are usually far removed (in frequency terms) from the original signals and thus cause fewer problems.

If we use real frequencies as an example, let's say we have transmitters on 80 and 85 MHz, the third order products will be at 75 and 90 MHz, the fifth order at 70 and 95 MHz. So we can end up with signals in the FM broadcast band from transmitters that were originally well outside it (and vice versa).

Intermodulation commonly occurs at the receiver (due to distortion in the sensitive amplifiers) but can sometimes occur at a transmitter, though this is more often caused by dodgy connections than by the transmitters themselves. There are stories of 'rusty bolts' on metal structures such as cranes acting as crude diodes (which are highly non-linear) producing intermodulation products if they are in strong radio fields. Because of this problem with receivers, it's not at all uncommon to receive a signal on a frequency where no signal is actually present, a 'ghost signal' as some have called it. Normally, putting an attenuator in line with the antenna will make the ghost signal completely disappear, proving that it is an intermodulation product and not a real signal (for every dB that a real signal decreases, the third order intermodulation products will usually drop by 3dB making them easy to detect).

inter mod ulationThose responsible for choosing frequencies for transmitters in a given area, usually try to avoid putting transmissions on frequencies where the intermods would fall on the frequency of a nearby receiver, especially if the victim receiver is on the same site. Taking the example above, at a site where a receiver operates at 75 MHz, planners would usually avoid a combination of frequencies (e.g. 80 and 85 MHz) that might result in intermodulation causing ghost signals to cause interference. This is normally one of the rules employed when planning the FM broadcast band (though oddly, the frequencies for BBC's national networks are totally counter to this logic and seem to work fine), and within PMR, cellular and microwave bands great care us taken to try and avoid a ghost signal appearing in any particularly scary locations!

With radio transmitters proliferating rapidly, the problem of intermodulation is growing, especially in dense radio environments and on busy sites. Improvements in receiver electronics are able to tackle some of the problems, but as pressure increases to make efficient and effective use of the spectrum, the problem of intermodulation isn't going away and in the end may prove one of the major limiting factors in maximising the density with which radio services can be packed together.
add comment ( 1347 views )   |  permalink   |   ( 3.1 / 26116 )

We're Jammin' (Part II)signal strength
Monday 31 December, 2007, 11:01 - Spectrum Management
Posted by Administrator
In a little known, sleepy backwater of the European Commission, moves are afoot to introduce a relatively obscure piece of legislation to allow mobile phones to be used on aircraft. There's nothing newsworthy in this you might think, Ryanair have already announced that they intend to install the equipment to allow their passengers to do just that and Air France have already begun trialling the service.

airborne base stationThe equipment concerned is basically a GSM base-station (working only in the GSM 1800 frequency band) installed inside the aircraft and connected back to the rest of the world via an external satellite link. However, the function of the equipment goes beyond just the role of making a connection between the mobiles on the plane - it must also stop the mobiles on the aircraft from connnecting with any terrestrial, ground based networks. Why is this important? It's argued that in order to allow mobile communication on aircraft, the power of the mobile transmitters must be kept to an absolute minimum to avoid interference to the avionics on the plane, which is a fairly sensible caveat to put in place. By forcing the phones on the plane to only connect with the on-board base-station their output power can be controlled and minimised, thereby minimising the risks concerned. The power needed for them to connect to a terrestrial network could be relatively high and could thus cause interfere with the avionics (there is some evidence to suggest this can happen) and this is why phones should normally be switched off during the flight (and especially during take-off and landing when pilots rely more heavily on the sensitive equipment in the cockpit).

jammingSo how are the on-board base-stations going to stop switched on phones from connecting to terrestrial networks? They are going to emit a jamming signal on all mobile frequency bands to stop terrestrial networks from being received whilst subscribers are sat on the plane. Yes, that's right, a jamming signal. And not just jamming of GSM 1800 but, in order to meet the legislation, they will have to jam all possible mobile bands including 450 MHz (occasionally used in Europe for CDMA-1x), 900 MHz (used for GSM 900) and 2100 MHz (used for WCDMA/3G). As the systems described in the European Commission legislation are for use in European airspace, the jammers will not have to cover 800 MHz or 1900 MHz (used widely in the Americas for CDMA-1x and GSM) or 1500 MHz (used in Japan).

It's interesting that most mobile operators have raised violent objections to the use of GSM or 3G jammers where these have been used to block mobile communications (in prisons, mosques and theatres for example). It's true that the transmitter power levels at which the jammers will operate are designed such that they will should not, under normal circumstances, affect ground-based users. However it will be interesting to see what happens if:

phone on plane
  • the on-board base-stations are left on at lower altitudes, or even on the ground, when they will have the potential to cause widespread wipe-outs of nearby mobile phone communications;
  • the base-stations enter a fault condition and jam critical aeronautical communications (such as the radars which occupy the frequencies immediately adjacent to the GSM 900 band above 960 MHz);
  • European planes leave the equipment switched on whilst traversing Asia or the Americas where the frequencies they are jamming are used for other purposes and thus could cause interference to many other services (such as point-to-point links or emergency communications);
  • non-European mobiles (such as those designed for CDMA 1900, CDMA 1700 or one of the Japanese PDC or PHS standards), their users thinking it's now OK to leave their mobiles switched on whilst in flight but which are not blocked by the jammer, log on to terrestrial networks and transmit at higher powers causing interruptions in the functioning of the on-board avionics.
Whilst there is no doubt that there will be big demand from air passengers to be able to send text message and make calls from the air (if the price is right - and that's a completely different issue), whether or not the equipment involved proves an unnecessary risk to air safety is something that is to be hoped will never be tested.
1 comment ( 1504 views )   |  permalink   |   ( 2.8 / 16108 )


<<First <Back | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | Next> Last>>