Wireless Waffle - A whole spectrum of radio related rubbish

We're Jammin' (Part II)signal strength
Monday 31 December, 2007, 11:01 - Spectrum Management
Posted by Administrator
In a little known, sleepy backwater of the European Commission, moves are afoot to introduce a relatively obscure piece of legislation to allow mobile phones to be used on aircraft. There's nothing newsworthy in this you might think, Ryanair have already announced that they intend to install the equipment to allow their passengers to do just that and Air France have already begun trialling the service.

airborne base stationThe equipment concerned is basically a GSM base-station (working only in the GSM 1800 frequency band) installed inside the aircraft and connected back to the rest of the world via an external satellite link. However, the function of the equipment goes beyond just the role of making a connection between the mobiles on the plane - it must also stop the mobiles on the aircraft from connnecting with any terrestrial, ground based networks. Why is this important? It's argued that in order to allow mobile communication on aircraft, the power of the mobile transmitters must be kept to an absolute minimum to avoid interference to the avionics on the plane, which is a fairly sensible caveat to put in place. By forcing the phones on the plane to only connect with the on-board base-station their output power can be controlled and minimised, thereby minimising the risks concerned. The power needed for them to connect to a terrestrial network could be relatively high and could thus cause interfere with the avionics (there is some evidence to suggest this can happen) and this is why phones should normally be switched off during the flight (and especially during take-off and landing when pilots rely more heavily on the sensitive equipment in the cockpit).

jammingSo how are the on-board base-stations going to stop switched on phones from connecting to terrestrial networks? They are going to emit a jamming signal on all mobile frequency bands to stop terrestrial networks from being received whilst subscribers are sat on the plane. Yes, that's right, a jamming signal. And not just jamming of GSM 1800 but, in order to meet the legislation, they will have to jam all possible mobile bands including 450 MHz (occasionally used in Europe for CDMA-1x), 900 MHz (used for GSM 900) and 2100 MHz (used for WCDMA/3G). As the systems described in the European Commission legislation are for use in European airspace, the jammers will not have to cover 800 MHz or 1900 MHz (used widely in the Americas for CDMA-1x and GSM) or 1500 MHz (used in Japan).

It's interesting that most mobile operators have raised violent objections to the use of GSM or 3G jammers where these have been used to block mobile communications (in prisons, mosques and theatres for example). It's true that the transmitter power levels at which the jammers will operate are designed such that they will should not, under normal circumstances, affect ground-based users. However it will be interesting to see what happens if:

phone on plane
  • the on-board base-stations are left on at lower altitudes, or even on the ground, when they will have the potential to cause widespread wipe-outs of nearby mobile phone communications;
  • the base-stations enter a fault condition and jam critical aeronautical communications (such as the radars which occupy the frequencies immediately adjacent to the GSM 900 band above 960 MHz);
  • European planes leave the equipment switched on whilst traversing Asia or the Americas where the frequencies they are jamming are used for other purposes and thus could cause interference to many other services (such as point-to-point links or emergency communications);
  • non-European mobiles (such as those designed for CDMA 1900, CDMA 1700 or one of the Japanese PDC or PHS standards), their users thinking it's now OK to leave their mobiles switched on whilst in flight but which are not blocked by the jammer, log on to terrestrial networks and transmit at higher powers causing interruptions in the functioning of the on-board avionics.
Whilst there is no doubt that there will be big demand from air passengers to be able to send text message and make calls from the air (if the price is right - and that's a completely different issue), whether or not the equipment involved proves an unnecessary risk to air safety is something that is to be hoped will never be tested.
1 comment ( 1504 views )   |  permalink   |   ( 2.8 / 16108 )

ADSL: A Daily Service Losssignal strength
Monday 19 November, 2007, 11:53 - Much Ado About Nothing
Posted by Administrator
For the past few months, every evening around sunset, my (ADSL) broadband connection at home has been 'drying up'. By this, I mean that the throughput has got smaller and smaller until eventually there has been no incoming or outcoming bandwidth available at all. If left alone, after an hour or two, the situation tends to correct itself but with sunset currently occuring during the working day, it's annoying to lose internet connectivity at these times.

At first I thought the problem might be to do with my ISP, Sky Broadband, but a quick scan of the rather useful, but unofficial, Sky User Forums didn't seem to indicate that others were suffering the same problems as me (though there were one or two veiled comments about how the connection sometimes dropped at night).

bt adsl filterMy next thought turned to my home installation. I'm quite a way from the local exhange and as such only get a connection speed of approximately 4 Mbps downstream and more like 0.4 Mbps upstream. According to my router, the available signal to noise ratio on the downstream link is only 8dB, that is to say that the ADSL signal on my phone line is only approximately 2.5 times higher than the noise on the line which isn't a great deal. But fiddling around with filters and connections makes next to no difference and the connection remains resolutely poor. During the 'dry periods' the signal to noise falls to 3dB or less (hence the loss of the connection), but re-booting the modem at these times oddly yields a return to 8dB.

Being a radio engineer type, and knowing that ADSL uses radio frequencies, I began to wonder whether the problem might be to do with increased radio interference on the line around sunset. ADSL uses frequencies from approximately 26 to 138 kHz for the upstream connection (i.e. from the home to the exchange) and in the range 138 kHz to 1104 kHz for the downstream connection (from the exchange to the home), though this frequency range is extended to just over 2200 kHz for the faster ADSL2+. Given my distange from the exchange, my connection is resolutely ADSL only (and not ADSL2+) and therefore if there was an increase in interference it would need to be in the frequency range 138 to 1104 kHz. However, as most ADSL modems are capable of running ADSL2+ even if the line is not capable of supporting it, it is likely that the receivers in them are not filtering out unwanted or unused frequencies making them susceptible to interference on frequencies up to 2200 kHz and quite possibly even higher even if those frequencies are not in use.

pole dancerNow as it happens, this frequency range is home, in Europe, to both long wave and medium wave radio transmitters (in the frequency range 148.5 to 285.5 kHz and 526.5 to 1606.5 kHz respectively) and there are many high powered radio transmitters in this frequency range. Could it be that the propagation that exists around sunset causes such a significant rise in the level of signals in this frequency range that it was knocking out my ADSL connection? The telephone connections in my area are via flown cables between telegraph poles (as they are still called despite telegraph having died out eons ago) and as such probably make rather good aerials, so it is quite possible that my modem is susceptible to incoming interference from high power long and medium wave broadcast transmitters.

When first booted up, the ADSL modems at both the exchange and the home end 'train', that is to say that they check all the available frequencies to see which have the best signal to noise and then use just these frequencies for the connection. This would perhaps explain why re-booting the modem during a dry period restores the signal to noise: clearly the frequency on which the interference occurs is one which is clean in the mornings when the modem is first switched on.

microfilter circuit diagramAs yet I have not been able to confirm my theory that interference from high power broadcast transmitters is knocking out my broadband connection, but it does seem eminently reasonable. Next steps are to do some tests (maybe connect a receiver to the phone line - bearing in mind it has 50 Volts on it!) Another option might be to add some filtering to the incoming line: surprisingly ADSL microfilters do not touch the ADSL frequency range they just stop the ADSL signal getting into/out of any phones connected (see the example circuit diagram on the right), which means, incidentally, that if you have nothing other than an ADSL modem connected to any phone socket in your house, you don't need a microfilter on it: you only need microfilters on the sockets where phones are connected. Perhaps, therefore, there's room for an improved microfilter that cleans up the incoming ADSL connection as well as keeping it out of the phones. I'll keep you informed of any progress - and if you experience these problems yourself leave a comment and I'll update you personally if I make any breakthroughs!

Update: 18 Dec 2007 Forcing the modem to use ADSL instead of ADSL2+ whilst reducing the connection speed by less than about 5% has almost eradicated the problem. It seems that purposefully avoiding the use of frequencies above 1.1 MHz does make a worthwhile difference.

Update: 11 Feb 2012 After much messing about Wireless Waffle has designed a filter which cures the ADSL drop-out problem that is described above. It costs next to nothing and can be made in minutes!
14 comments ( 5204 views )   |  permalink   |   ( 2.8 / 49115 )

Essentials of Modern Spectrum Managementsignal strength
Wednesday 31 October, 2007, 05:35 - Spectrum Management
Posted by Administrator
Spectrum management has traditionally been about the use of technical criteria developed through long-winded compatibility studies to determine what can (and can not) be allowed access without causing harmful interference to other users. essentialsofmodernspectrummIncreasingly, however, regulators are using forward looking market-based spectrum management techniques such as administrative incentive pricing, auctions and comparative selection (beauty parades), trading and property rights in order to be able to adapt to the rapidly changing and liberalised markets which use the radio spectrum.

Mssrs. Cave, Webb and Doyle have documented the current state of play in these forward looking techniques (often lumped together under the banner of 'Spectrum Pricing') in their new publication Essentials of Modern Spectrum Management. They describe developments in both the technical and economic tools used to manage the radio spectrum as well as looking at other related issues such as the need for and benefits of spectrum commons. There's also a good discussion of why Ultra Wide Band (UWB) has made many regulators reflect on whether existing spectrum management techniques are appropriate or have sufficient longevity and flexibility to cope with such new approaches to spectrum use.

cave webb doyle

The book uses a number of international case studies together with the practical experience of the authors to illustrate many of the concepts involved. Whilst the book would not be suitable for someone wishing to gain an overall understanding of spectrum management, it provides a useful and inciteful reference on these more advanced techniques and would suit anyone who has experience of spectrum regulation and who wanted to understand better how such regulation is being transformed to encourage more efficient spectrum use. Certainly a book that should be on the shelves of any self-respecting modern spectrum manager!
add comment ( 1594 views )   |  permalink   |   ( 3 / 26921 )

Trains, Boats, Planes, God, Kylie Minogue, and more Planessignal strength
Saturday 22 September, 2007, 07:08 - Spectrum Management
Posted by Administrator
Years ago I used to know the frequency¹ for the downlink of Capital Radio in London's 'Flying Eye', the aircraft used to scout about for travel blackspots. It was a useful frequency to have as there was no better place to get the latest travel news. I also remembered that there was an uplink from the studio on around 455 MHz too.

minaret antennaOne quiet afternoon I thought I'd have a tune around to see whether or not the old up and downlink frequencies were still active. Listening around 467 MHz, there seemed to be no sign of the downlink (though being around 25 miles outside of central London and with a downlink power of less than a Watt, this wasn't perhaps, that surprising). The uplink, however, is still active on 455.075 MHz.

What was rather odd, however, was to hear dozens of Imam's calling their congregation to prayer on frequencies just below this at around 454.5 MHz. Was this some freak long-distance propagation carrying signals from arabic speaking countries in North Africa or the Middle East? Was it a freak spurious response on my receiver, allowing reception of, perhaps, satellite radio? Were these the link frequencies to the numerous 'Radio Ramadan' stations that appear on the FM band during the festival?

No. It was none of these. Instead it seems that there is a radio service, established in around 2000, called 'On-Site Religious Observation' or OSRO. This a a licensed radio service which allows any religious body to use the old Wide Area Paging (WAP) channels to deliver voice communications to pagers. What a good use for these otherwise quiet channels: to allow Muslim's their right to hear the Imam's call without the need to build noisy minarets, just build unsightly radio towers instead!

A bit more digging revealed that there are all sorts of interesting frequencies in the range 454 to 458 MHz as listed below:

lego kylie454.0125 to 454.8375 MHz OSRO/WAP
454.84375 to 454.98125 MHz Cab Secure Radio (CSR)²
454.9875 to 455.475 MHz Programme Making and Special Events (PMSE)³
455.475 to 455.850 MHz Airport Security and Operations (455.5125, 455.5375, 455.5875, 455.625, 455.6625, 455.675 and 455.6875 MHz also used for CSR)
455.850 to 456.000 MHz Fire Service
456.000 to 456.9875 MHz Private Mobile Radio (PMR) Simplex and Duplex use
457.000 to 457.250 MHz Fire Service
457.250 to 457.475 MHz PMSE
457.475 to 457.500 MHz Fire Service
457.500 to 458.500 MHz Scanning Telemetry (457.525, 455.5375, 457.550, 455.5625 and 457.575 MHz also used for On-Board Ship Communications)

With Ofcom considering reconsidering its previously aborted plans to re-align the band it will be interesting to see where these services end up. And in the meantime if anyone has the frequency used for the Flying Eye's downlink, do share it with us!

¹467.6625 MHz if I remember correctly.
²Radio system used by Network Rail in areas where rail services have no conductor and thus the driver can not leave the cab to commnunicate with the signaller.
³Links and talkback for radio stations, TV studios, film sets, theatres and so on. Could be used by production team at a Kylie Minogue concert for example...
2 comments ( 2520 views )   |  permalink   |   ( 3.1 / 29088 )


<<First <Back | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | Next> Last>>